

NANJING UNIVERSITY OF SCIENCE & TECHNOLOGY

Review of Wearable Human Extremity Exoskeleton and Research on Crucial Technologies

Guan Xiaorong February, 2019

Welcome to Nanjing & NUST

CONTENTS

Review of Research Activities on WHEE

- Achievements of WHEE
- Key Technologies

Work Related to WHEE Performed by NUST Team

- Way to Design Biomimetic Structure
- Control Schemes
- WHEE Prototypes

PART ONE >

Review of Research Activities on WHEE

Part 01 → Preface

An exoskeleton is the external skeleton that supports and protects an animal's body, in contrast to the internal skeleton "endoskeleton"

Exoskeletons contain rigid and resistant components that fulfill a set of **functional roles** in many animals including protection, excretion, sensing, support, feeding and acting as a barrier against desiccation in terrestrial organisms

Wearable Human Extremity Exoskeleton (WHEE) is a wearable mobile machine that is powered by a system of electric motors, pneumatics, levers, hydraulics, or a combination of technologies that allow for limb movement with increased strength & endurance

Part 01 -> Background

Firefighting Load Costing much

Part 01 → Achievements of WHEE

Nicolas, Russia, 1890 Helping to Run & Jump With Spring Steel Plate Leslie, USA, 1917 "Pedomotor" Assist Walking With Steam Power

Dick & Edwards, 1990 "Spring Walker" Helping to Run & Jump MV 50km/h With Leverage Principle GE, USA, 1960 "Hardiman" First Active WHEE SW 680kg, 30 DOF Strengthening Human Power 25 Times

Part 01 → Achievements of WHEE

Materials

Motion Prediction

Requirements

- > Accuracy
- Response Speed
- > Reliability
- > Adaptivity

Sensor	Algorithm
Force Sensor	Multi-sensor Fusion
Posture Sensor	Combined with Motion Control
Bioelectricity Sensor	

Control Scheme

- > Harmony
 > Accuracy
 > Self Learning
- > Real Time
 > Adaptivity

	Pre- programming	Direct Force Feedback	Ground Force Feedback	ZMP	EMG	Operator	Master-Slave	Sensitivity Amplification
Operator Adaptivity	2	3	2	1	1	5	1	1
Motion Adaptivity	1	5	5	5	2	1	5	3
Motion Stability	2	5	2	5	1	1	5	1
Ergonomics	5	2	4	2	5	5	2	4
Sensors on Wearer	5	2	3	1	1	3	2	1
Sensors on Machine	4	3	1	1	3	3	4	1
Hardware Requirement	5	2	2	3	5	5	1	2
Computational Load	3	3	1	4	2	5	4	5

Requirements

- Power Density
 (weight & size)
- Flexibility
 (Variable Stiffne)
- > Accuracy
- > Safety

S		Advantages	Disadvantages			
nsity size)	Hydraulic Drive	 High Reliability Smooth Work Small Inertia Overload Protection Stepless Speed Regulation 	 High Sensitivity to Load & Oil Temperature Easy Leakage of Oil 			
Stiffness)	Motor Drive	 High Response High Standardization High Automation Simple Construction Low Pollution 	 Low Motion Balance High Sensitivity to Load High Inertia Slow Reversal Large Volume 			
	Pneumatic Drive	 Simple Construction Low Cost Stepless Speed Regulation Low Pollution Low Resistance Loss 	 Easy Compressibility and Leakage of Air High Sensitivity to Load Low Accuracy Difficult Sealing Fit Low Power Drive 			

S Power Source

Requirements

- High Energy Density
- > Long Charge Life
- > Safety
- Light Weight

	Energy Density (Wh/kg)	Charge Life (Times)
Lead-Acid Battery	25	1000 - 2000
Ni-Cd Battery	45 - 80	3000
Zinc Bromide Battery	70	-
Sodium-Sulfur Battery	100	2500
Lithium Battery	90 - 190	3000
Gasoline	11963	-

Effectiveness Assessment

Problems

> Obvious Differences from Subjective &

Qualitative Assessments

- No Standards
- > Difficulty in Obtaining Human Indices

PART TWO

Work Related to WHEE Performed by NUST Team

S Kinematics, Dynamics & Human-Machine Coupled Simulation

Lagrange Mechanics Theory Adopted Here

Angular Velocity of Mass Center

$$\begin{bmatrix} \omega_{i0} \end{bmatrix} = \begin{bmatrix} \Delta_{i0} \end{bmatrix} / dt = \begin{bmatrix} 0 & -\omega_{i0z} & \omega_{i0y} \\ \omega_{i0z} & 0 & -\omega_{i0x} \\ -\omega_{i0y} & \omega_{i0x} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\omega_{i0z} & 0 \\ \omega_{i0z} & 0 & -\omega_{i0x} \\ 0 & \omega_{i0x} & 0 \end{bmatrix}$$

Velocity of Mass Center $\begin{bmatrix} v_{i0} \end{bmatrix} = \begin{bmatrix} \dot{P}_{i0} \end{bmatrix} = \begin{bmatrix} \dot{S}_{i0} \end{bmatrix} + \begin{bmatrix} R_{i0} \end{bmatrix} \begin{bmatrix} \dot{P}_{ii} \end{bmatrix} + \begin{bmatrix} \omega_{i0} \end{bmatrix} \begin{bmatrix} R_{i0} \end{bmatrix} \begin{bmatrix} P_{ii} \end{bmatrix}$

Space Coordinate Transformation

$$\begin{bmatrix} P_a \\ 1 \end{bmatrix} = \begin{bmatrix} T_{ab} \end{bmatrix} \begin{bmatrix} P_b \\ 1 \end{bmatrix} = \begin{bmatrix} R_{ab} & S_{ab} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} P_b \\ 1 \end{bmatrix}$$

Gravitational Potential Energy

$$N_i = m_i g y_{Gi}$$

Kinematics, Dynamics & Human-Machine Coupled Simulation

Lagrange Mechanics Theory Adopted Here

Space Coordinate Transformation

$$\begin{bmatrix} P_a \\ 1 \end{bmatrix} = \begin{bmatrix} T_{ab} \end{bmatrix} \begin{bmatrix} P_b \\ 1 \end{bmatrix} = \begin{bmatrix} R_{ab} & S_{ab} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} P_b \\ 1 \end{bmatrix}$$

Translational Kinetic Energy

 $K_{Gi0}^{\nu} = \frac{1}{2} m_{Gi} \left[v_{i0} \right]^{\mathrm{T}} \left[v_{i0} \right]$

Rotational Kinetic Energy

$$K_{Gii}^{\omega} = \frac{1}{2} I^{ii} \begin{bmatrix} \omega_{i0x}^2 & \omega_{i0y}^2 & \omega_{i0z}^2 \end{bmatrix}^{\mathrm{T}}$$

Lagrange Equations

$$\begin{cases} T_{\alpha_i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{\alpha}_i} - \frac{\partial L}{\partial \alpha_i} \dots (\text{Rotational joint}) \\ F_{l_i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{l}_i} - \frac{\partial L}{\partial l_i} \dots (\text{Translational joint}) \end{cases}$$

	Establish the 3d model of every part Obtain the angle curve of Clin Analysis (CGA) by measu based on the gait databa							
	Import the 3d models and the angle curve of Clinical Gait Analysis into the Adams							
	Drive the human body model by the angle curve of Clinical Gait Analysis to calculate out the angle curve (curve of angle changing with time) of every DOF of the lower extremity exoskeleton in Adams.							
	Get rid of the human b lower extremity exo calculate out the pressu of the lower ex	Get rid of the human body model, driving every DOF of the lower extremity exoskeleton model by the angle curve to calculate out the pressure curve of the four hydraulic cylinders of the lower extremity exoskeleton in Adams						
	Simulate the coupled model of human body, lower limb exoskeleton and payload to calculate out the torque curves and power curves of every DOF of human body in Adams	Simulate the model of human body directly bearing load to calculate out the torque curves and power curves of DOF of human body in Adams	Simulate the model of human body without bearing load to calculate out the torque curves and power curves of every DOF of human body in Adams					
	Get the energy consum	untion of every DOF of	f human body by					
)	integrating the power curves. In order To analysis the auxiliary effect of the lower extremity exoskeleton by comparing the torque and the energy consumption of the three models.							

Simulation Flow

G Kinematics, Dynamics & Human-Machine Coupled Simulation

	Parameters	Value
ł	Part	22
	Translational Joint	4
	Spherical Joint	5
	Hook Joint	2
	Revolute Joint	2
	Fixed Joint	9
	Rotational Motion	2
	General Motion	4
	Force Motion	4
	Spline	14
	Payload	100 Kg
	Process Time	0.25 s
	Half Stride	377.75 mm
	Walk Speed	1.511 m/s

Pressure of Hydraulic Cylinder

Kinematics, Dynamics & Human-Machine Coupled Simulation

Drive Torques of Left Joints

Drive Power of Left Joints

Drive Torques of Right Joints

Drive Power of Right Joints

Kinematics, Dynamics & Human-Machine Coupled Simulation

Case	I		II		III	
DOF	fle/ext	add/abd	fle/ext	add/abd	fle/ext	add/abd
Torque of right ankle, Nm	-58~-33	-84~26	-249~60	-249~72	-249~89	-264~36
Torque of right knee, Nm	-55~26		-198~82		-208~139	
Torque of right hip, Nm	-44~109	-3~122	-124~99	20~269	-118~177	0.2~217
Torque of left ankle, Nm	-9~-5	0~4	-9~-5	3~7	-9~5	0~4
Torque of left knee, Nm	-37.9~-3		-17~7		-37.9~-3	
Torque of left hip, Nm	-107~21	-20~58	- 66~41	-20~58	-107~17	-20~58

Drive Torques of Different Models

Case I: Human Body: Case II: Human Body + WHEE; Case III: Human Body + Payload fle/ext: flexion/abduction; add/abd: adduction/abduction

The power support effect of WHEE can not be reflected directedly by the range of drive torques

Kinematics, Dynamics & Human-Machine Coupled Simulation

Case	Ι		II		III	
DOF	fle/ext	add/abd	fle/ext	add/abd	fle/ext	add/abd
Energy of right ankle, J	11.9	1.7	15.6	4.0	18.1	4.4
Energy of right knee, J	11.8		31.2		34.7	
Energy of right hip, J	28.3	10.0	32.3	22.3	50.5	36.5
Total energy of right leg, J	63.7		105.4		144.2	
Energy of left ankle, J	2.0	0.1	2.1	0.3	2.0	0.1
Energy of left knee, J	3.6		2.6		3.6	
Energy of left hip, J	25.0	3.0	17.4	2.9	25.0	3.0
Total energy of left leg, J	33.7		25.3		33.7	
Total energy, J	97.4		130.7		177.9	

Energy Consumption of Different Models

Case I: Human Body: Case II: Human Body+WHEE; Case III: Human Body+Payload fle/ext: flexion/abduction; add/abd: adduction/abduction

The WHEE can obviously reduce the energy consumption of human body

The Force Control Method is adopted here, and this idea is to minimize the interaction force between human body and machine for reducing energy consumption of human

Traditional PI Controller

Simulation Model

Experimental Scheme

Drive Torque at Low Speed by Motor

Drive Torque at Low Speed by Human Body

Drive Torque at High Speed by Motor

Drive Torque at High Speed by Human Body

Human body should provide larger drive torque at high speed than at low speed, and thus the traditional PI controller can not obtain nice effect at high speed $\frac{1}{100}$ is $\frac{1}{100}$

Angular Deviation at Low Speed

Angular Deviation at High Speed

The angular deviation at high speed becomes bigger, and thus it's unfavorable for the WHEE performance as well as system safety

For the Interaction Force Control Method of WHEE, the traditional PI controller is not efficient, especially at high speed

Thus, the Fuzzy Self-Adaptive PI Controller is advanced

Fuzzy Self-Adaptive PI Controller

Diagram of Fuzzy Self-Adaptive PI Controller

Simulation Model of Self-Adaptive PI Controller

Proportional-action coefficient k_p and integralaction coefficient k_i is adjusted by the controller based on the input signal e and the input differential signal ec. After low-pass filtering, the outputs of Fuzzy Logic Controller is changed to k_p and k_i , and PI signal can be obtained by multiplying the input signal, k_p and k_i .

Parameters Settings for Fuzzy Self-Adaptive PI Controller

Drive Torque at Low Speed

Drive Torque at High Speed

Angular Deviation at Both Low & High Speed

Elbow Joint Angular Deviation at Both Low and High Speed

The Fuzzy Self-Adaptive PI Controller can insure that the motor's drive torques are much larger than those provided by human body, and the angular deviations at both low and high speed are all acceptable.

So the Fuzzy Self-Adaptive PI Controller can work well for WHEE.

Part 02 -> WHEE Prototypes

	HULC USA	HERCULE France	Warrior-21 Russia	HAL-5 Japan	NUST P.R. China
Self Weight	24 kg	30 kg		21 kg	18.5 kg
Weight Bearing	90 kg	100 kg		40 kg	65 kg
Max Velocity	4.8 km/h	4 km/h	16 km/h	4 km/h	5 km/h
Efficiency					75.1%

THANK YOU FOR WATCHING

