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1. Introduction



Background

Human Motor Control

Motor unit (MU)

motoneuron + muscle fibers Electromyography (EMG)
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Background

EMG is a kind of Human-Machine Interface (HMI)
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Computer Device Control Exoskeleton Control



Our Targets

B2007 HowStuffWorks
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FES= Functional Electrical Stimulation

An important rehabilitation technique

Controlling electrical
pulses of low level to
stimulate the skeletal
muscle in an attempt
to restore the motor
function and generate
the desired motions
for paralyzed patients.
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Suitable Conditions for EMG+FES

1) The patient is incompletely paralyzed.

He can weakly drive some muscles voluntarily, but
the force is not enough to perform movement, or the
movement is abnormal and awkward. Then the weak
EMG that can be interpreted as a desire for a certain
muscle contraction and it is recorded to stimulate the
same muscle positively.




Suitable Conditions for EMG+FES

2) EMG from some normal muscles can be

used to stimulate the paralyzed muscles (not
symmetric ones) in the ipsilateral side of a limb. For
example, the EMG of proximal muscles of upper
limb is employed to stimulate the distal muscles to
perform grasping via FES; the EMG from the wrist
extensor muscles has been used to control the
stimulation of the finger and thumb flexors in order
to obtain a stronger tenodesis; the EMG of biceps is
used to modulate the stimulation for triceps.




Suitable Conditions for EMG+FES

3) The patient is hemlpleglc The EMG

information from one side of human limbs can
be used to control the paralyzed symmetric
muscles of the contralateral side via FES.

Case Study 1




Suitable Conditions for EMG+FES

4) Master slave control. The EMG information from
healthy persons of master side, which remotely
controlled the patients of slave side.

Case Study 2




Case Study 1

EMG in FES rehabilitation system for

hemiplegic patients



General Idea

Serve for Hemiplegic Patients!

FES for the paralyzed side

N

EMG from normal side

> Controller




Hierarchical FES Control System

Our focus: EMG based
Recognition
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EMG Measurement

Inside view Outside view

EMG Electrodes Locationin Left Leg.

Six targeted muscles:

rectus femoris, vastus group, biceps femoris,

Semimembranosus, gastrocnemius, soleus Mega EMG System (ME6000)



States of Motion in Lower Limb

Four types of motions to be classified.



Protocol

* Three healthy subjects took part in the EMG measurement.

* Six channels of EMG signals are acquired from six muscle
groups on one leg.

* The subjects perform four types of movements: sitting
down, standing up, stillness (standing quietly and keeping
body balance), and walking in sequence.

* Every type of motion will be performed 60 times. The EMG
signal acquired during the first 30 times will be used as
training data, and that of the last 30 times as testing data.



EMG Processing

Classification
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EMG Processing

EMG

Segmentation:  Increment  Analysis
window

100 ms 200 ms




EMG Feature Extraction I

Time Domain Statistics (TDS) Features
1 N
Mean Absolute Value X= 353 |
T g=1
Zero Crossing ririi1 < 0,and |y — i |> <,
Slope Sign Changes (wir1 — i) (i — wi—1) 2 &5

N
Waveform Length b= | e |
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EMG Feature Extraction 11

Fourier Cepstral (FC) Features

(1) Calculate the energy spectrum using the discrete Fourier transform

N-1
X[k] = Z a:[n]catp_j%"k. k=0.1...N-=-1.

n=>0

(2) Calculate FC coefficients from the nonlinear magnitude of the Fourier-
spectrum transform directly using discrete cosine transform

(k+1/2)(G — )
N

N-—-1
FC;= ) _ Yicos( ),i=0,1,...,N. (7)
k=0

where x(n) is the EMG data. Y = f(

X [k]| that is the magnitude of Fourier coefficients,

X [k]|) is a nonlinear transformation (e.g.

logarithm of magnitude) of
and /N is the number of FC coefficients.



Classification

Classifiers:

Linear Discriminant Analysis (LDA)

Quadratic Discriminant Analysis (QDA)

py | wi)
plwi | y) = plw;) |
p(y)
where p(y | w;) is the class-conditional probability density function (PDF)
1 1 —_— |
ply | wi) = o rexP{—5(y — ) T (y — )}

> 2

(2m) % |2y

Note: It is called LDA. When covariances X; are assumed to be different,
the decision boundaries are hyperquadric surfaces, and this is called QDA.

Fisher linear discriminant (FLD) is adopted to reduce the dimension
before QDA classification in this work.



Results

Average Classification Accuracy of Three Subjects

Subjects] FC |FC(FLD)| AR |AR(FLD)[ TDS |TDS(FLD)
+LDA| +QDA |+LDA| +QDA |+LDA| +QDA
73 19583 9583 [95.83] 94.17 |96.67] 97.50
L7Z7 |98.33| 97.50 [92.50| 90.00 |96.67| 95.83
YYC || 9750 | 99.17 |94.17| 9417 |9250 | 90.83
Mean || 97.22| 97.50 |94.17| 9278 [95.20| 94.72




Results

Average Classification Accuracy of Four Types of Movements

Subjects FC |FC(FLD)| AR [AR(FLD)| TDS |TDS(FLD)
+LDA| +QDA |4+LDA| +QDA |+LDA| +QDA
Walking 96.67 | 98.89 100 100 98.75 97.22
Standing up || 95.56 | 95.56 [ 87.78 | 86.67 | 92.04 91.94
Sitting down [|96.67| 95.56 | 88.89 | 84.44 | 90.01 89.72
Standing still|[ 100 100 100 100 100 100
Mean 9723 | 97.50 |94.17| 92.78 | 95.20 94.72




Demonstration

Offline EMG data Driven FES for Walking


FES walk.MPG

Case Study 2

EMG in Master-Slave Gesture
Learning System using FES



General Idea
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Master Side

EMG Signal Acquisition and Processing

EMG Armlet

Features: Time Domain Statistics (TDS)
Classifier: Support Vector Machine



Slave Side

Functional Electrical Stimulation (FES)




Demonstration

Master Side Slave Side



Outline

3. EMG for amputees



EMG for Amputees

Case Study 3

Handwriting Recognition using EMG

Case Study 4

EMG Controlled Prosthetic Hand



Case Study 3

Handwriting Recognition using EMG



Objective

* Allow a person (maybe disabled) to communicate or
control the computer and mobile phones without
keyboard or other input devices.

* Provide a natural, low-cost input way for HMI (Human-
Machine Interface) based on EMG.




Method

1. Preprocessing

2. Onset and Offset Detecting
3. Template making

4. Template matching



Preprocessing

* Notch filter of 50Hz (power frequency), and
bandpass filter for 10-200Hz

Blue (removed), Red (left)



Onset and Offset Detecting

* Detecting technique plays an important role for
recognition.

*  Weset the threshold based on the energy and
its slope of the EMG signal.
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Template Making
Dynamic Time Warping (DTW) algorithm

Conventional Processing
4 )

D, (n,m)=D(n,m)+ mm D, (n-1.q9) Six-channel Initial Final
Minimize the cumulative distance EMG Template Template
between points m & n



Template Matching

Compared with all the templates by DTW method,
system recognize the character corresponding to

the smallest distance.
3 4
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Results

Performance on three character sets:
* digit characters from ‘0" to ‘Y’

 Chinese characters from —’ (one) to ‘-’ (ten)
* capital letters from ‘A’ to ‘Z’

100
01234 ——-=-wWEg ABCDEFGHIJ
L KLMNOPQRS
56789 | FEALT | tuvwxyz .
ACCURACY ON THREE CHARACTER SETS. = ‘ : 3
B5 - R R e .
No. character set  size  accuracy(%) O SRR SRR SRR
1 digits 10 98.25 o - . - 1
2 Chinese 10 97.89 505 5 10

1‘5 20
3 letters 26 84.29 the size of the training set




Combined with AEVIOUS

Visible HCI=AEVIOUS Input: Chinese character=>phonetic symbol (Pin Yin)

6 slide directions
in a hexagon unit



EMG Handwriting.mpg

Demonstration

Experiments on an amputee



Continuous Work

* improve EMG acquisition instrument
* apply on disabled with hand deficiency
* control mobile phone with Bluetooth

. small battery operated

multi-channel EMG monitor
with Bluetooth



Case Study 4

EMG Controlled Prosthetic Hand



Basic Theory

Acquisition & [  Feature i e \ DI’IVGQ
Preprocessing | Extraction % Electronics
EMG Signal Processing

Prosthesis

Block diagram of EMG controlled prosthetic hand



Our Recent Work

EMG Signal Processing based on Pattern Recognition

Feature Prosthetic
Measurement Extraction

Mega
Biometrics

ﬁgg;gned




Our EMG Equipments

Biometrics Self-designed EMG armlet



Discriminant Bispectrum (DBS)

e N-th order cumulant function of a non-Gaussian
stationary random signal x(k):

C,\I(TI-TZ-""TN—]):"I (Tl T7 ..... Tn_.]) ’)I (T] T') ..... Tn ])

* Bispectrum B(w1,w?2) is defined as 2-dimensional
Fourier transform of the 31d grder cumulant function:

B(w,m) = Z Z Cy(T1, 72, )exp[—j(@ T1 + 0272)]

T=—0o T =
* Direct estimation of bispectrum of K segments
L&
BS(,m,) = = L; BSi(w;, )
* Estimation of bispectrum in the k-th segment
BS;(@.an) = #X(a)] )X (@)X (0 +an)



Bispectrum Integration

@4 @ @y ®

Radial ipfegration direction Axial ixtegration direction

1-dimentional

integration '
\ gr / \ Z - >

@, @,

_I_ 2-D Bispectrum Matrix is transformed to 1-D integral feature

Fisher linear - det( WTSI %4 )
iscriminan W)=
s y JW) det(WTSyW)

Dimension Reduction

[Chen XP, Zhu XY, Zhang DG, Medical Engineering & Physics, 2010]



Results of DBS

ication Accuracy

98% S N i i D
97% B 1
96% F \T= 1
95% E ]
94% — 1
— |
Q3% B 4 ]
.

T = |

-t 4

AR PSD RMS TD
Features
Box-plot of the CA result for features

7

Table 3 ! |
CA results (%) of different features and classifiers for each participant
1
Participants (P) ' DBS | AR PSD RMS D
P1 : LLC 965 | 9240 9611 9664 94580
' GMM 975 | 9480 9641 9379 9621
' MLP 975 | 9270 955 95.6 95.62
| SVM 974 ! 9430 9633 9400 9679
1
1
P2 | LLC 9430 ! 9¢7" 77T cetn o oooo
1
| GMM 9673 ' 91 . .
' MLP 9370 | 9 Time Cﬂnsumlllg:
' SVM 9640 | 9
| 1
P3 I LLC 9830 1 91 -
B B2 2 » DBS - 40ms
i MLP 9830 | o _
S el o » AR -28ms
1
P4 fuc s s 3 PSD - 38ms
| GMM 9831 ! 9
' MLP 9646 1 9( m
1 —
Y 9825 91 > TDS 2 S
1 1
Ps L uc w47t oo » RMS-0.5ms
! GMM 9781 | 9
' MLP 98.30 | 9¢
' SVM 98.43 | o«
1
P6 i LLC 98.17 ' 9582 9735 89.12 988
| GMM 9931 ! 9657 9859 9273 991
| MLP 99.18 1 9533 9738 a4.1 98.4
' SVM 9941 1 97.16 9738 a4.1 99.2
1
P7 ' LLC 9578 1 9353 9301 921 9435
' GMM 9892 ; 9516 9346 938 96.31
! MLP 9775 | 94.1 92.86  93.2 94,73
I SVM 9863 | 9532 937 945 96.24
1
1
1

classification

DBS AR PSD RMS TD
features
(d) Mean/STD CA result for features 51



Fourier Cepstrum (FC)

* Energy spectrum is achieved via discrete Fourier transform

N—1 AN
k+1/2)i—-Vm.
FC,-:Zchos(( L) Gt S
k=0 N

e FC coefficient
N—1 —
X[k] = Z x[nlexp 7 ¥™* k=0,1,....N—1.
n=>0

is achieved from the nonlinear magnitude of Fourier-spectrum
transform directly using discrete cosine transform (DCT).



Discriminant Fourier Cepstrum (DFC)

Fisher feature |
N —

Segmentation —+mel FC coetficient i
selection

- . ” |
sEMG signal e T o e T
-2 DFC feature extraction

FC coefficients (FFT + DCT):

(1) Calculate the energy spectrum using the discrete Fourier transform

N-1

X[kl = ) x[n]exp™ ¥k, k=0,1,...,N—1. 3)
n=0
(2) Calculate FC coefficients from the nonlinear magnitude of the Fourier-spectrum DFC feature
transform directly using DCT
N-1 ——
s e (k+1/2)(i — Dm ; .
F(-i=§)kcos( d v ) Dl B N, (4)

Fisher ratio feature selection:
Sg(i)
Swii)

Jasn (i) =

[Chen XP, Zhu XY, Zhang DG, Physiological Measurement, 2009]



Results of DFC
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Expected Performance

1. At least 8 classes of motions can be recognized.
Versatile functions

2. The recognition accuracy should be above 90%.
Accurate control

3. The computation time of algorithms should less
than 300ms.

Fast response



Adaptive Classifier

Self-enhancing adaptive classifier
B Increasing the training data set

E Information in testing data is used to update parameters of

classifier.

E LDA and QDA is improved to self-enhancing classifiers.

\ The Influence of the Classifier (AR Features)

100~

Classifier

[Chen XP, Zhang DG*, Zhu XY, ]. NeuroEngineering & Rehabilitation, 2013]

2 %] 1 I 1 I

=

8 90l

=

3

§ 85} MLP: multilayer perceptron

2 LP: linear perceptron

é 8ot LDA: linear discriminant

e analysis

5 GMM: Gaussian mixture

© 75 model

HMM: hidden Markov model

7 1 1 T T T
0MLP LP LDA GMM HMM



Adaptive Classifier

mean vector and

covariance matrix )
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Conventional Classifiers
Linear Discriminant Analysis (LDA)

Quadratic Discriminant Analysis (QDA)

. ply | wi)
p(wi | y) = pw;) |
p(y)
where p(y | w;) is the class-conditional probability density function (PDF)
Py |wi) = —F5—gexp{—5(y —p) L7 (y — )}
(2m) 7| 252 =

Note: It is called LDA. When covariances X; are assumed to be different,
the decision boundaries are hyperquadric surfaces, and this is called QDA.

Fisher linear discriminant (FLD) is adopted to reduce the dimension
before QDA classification in this work.



Adaptive Classifier

The updated mean vector 11, for the kth class i1s

- Nncp * W + 2 _
= k* M : where z is the new EMG feature
ncg + 1
the class covariance matrix > is updated by
s T =
Yk = St
neg + 1
1 _ 1
neg + 1 neg -+ 1
ncy 1 "
= 2 + Cs

ne,+1 7 nep +1

Denote Sy = Y . (x; — py)(z; — g Ch= (.,2(4_.';';1)(3 — ) (z = )"
ner+1 - ~ \T -
Ok = D ey (@ — ) (i — i) Sk = Sp—+Ch,



Protocols

Conventional

(short-term) Protocol

Long-term Protocol

.

Il ‘ |.‘ |
‘ |

2~3 hours
time span

—_—

O

Protocol 1
EMG training data . EMG testing data
(6 cycles) (14 cycles)
¢ 9~11 hours e
Morning time span Evening
—— o — -
EMG training 6~7 hours EMG testing data
ttesting data time interval  , (20 cycles)

(15 cycles)

Protocol 2
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Short-term Performance

Experiment results (unsupervised method)
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Long-term Performance

d method)

Experiment results (unsupervise
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Prototypes of Prosthetic Hands

=4 M

e =

~ SJT-2~SJT-5Hands

SJT-6 Hand




Experiment on Amputees

TABLEI
THE INFORMATION OF THE AMPUTEE SUBJECTS

Subject
(gender. age)

Dominant
Hand

Lower arm Cause of Time since
stump length (¢cm) — amputation  amputation (years)

Prosthesis usage
/type of prosthesis

Subl (M. 72)
Sub2 (F. 50)
Sub3 (F, 56)
Sub4 (F. 57)
Sub5 (M. 60)
Sub6 (M. 36)

Right hand
Right hand
Right hand
Right hand
Right hand
Right hand

mid third (15) Traumatic 34
upper third (10)  Traumatic 25
upper third (8) Traumatic 31
mid third (17) Traumatic 30
mid third (16) Traumatic 7
mid third (16) Traumatic 8

I

Half day. myoelectric
Half day. myoelectric
All day, cosmetic
Half day. cosmetic
Half day. cosmetic
Half day. myoelectric




Placement of Electrodes

Anterior View

Posterior View



Demonstration

SJT-6 Prosthetic Hand Controlled by
SJT-iIMYO EMG Armlet
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The END

Thank you for your attention!

Contact: dgzhang@sjtu.edu.cn



