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Murthy, Fetz, 1996

V. N. MURTHY AND E. E. FETZ 
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FIG. 1. Method of identifying spikes that occurred dur- 
ing oscillations. Local field potential (LFP) signal was 
passed through a window discriminator to generate cycle 
pulses. Three or more such pulses occurring together with 
inter-trigger interval of <50 ms were defined as an oscilla- 
tory episode. All unit spikes that occurred in the interval 
from 50 ms before to 50 ms after the episode were desig- 
nated as spikes “inside” oscillations; others were desig- 
nated outside oscillations. 

spikes outside 
oscillations 

spikes during 
oscill .ations 

spikes outside 
oscillations 

and 2) the time difference between the peak and the closest LFP 
negativity; and, when histograms had multiple peaks, 3) frequency 
of oscillation (d/2n) and 4) decay constant of Gabor function 
divided by the period of oscillation (d/2rb), which measured the 
degree of periodic oscillations in the histograms. 
CROSS-CORRELATIONS. The CCHs were calculated with a bin- 
width of 0.5 or 1 ms, for 125ms periods before and after the 
reference spikes from one of the electrodes. To determine the corre- 
lation between units specifically during the oscillatory episodes, 
we compiled “oscillation-selected CCHs” ( OS-CCHs) using only 
spikes that occurred during LFP oscillations (Fig. 1). If at least 
three cycle pulses occurred with an interpulse interval of ~50 ms, 
the first and last trigger defined the onset and offset of an oscillatory 
episode. Unit spikes that occurred within a Eeriod from 50 ms 
before the onset to 50 ms after the offset were considered to be 
spikes “during” the oscillatory episode. Spikes that failed to sat- 
isfy this criterion were considered to be spikes “outside” oscilla- 
tions. Note that the selected spikes could have occurred at any 
phase of the LFP oscillations. STAs of LFPs recorded from both 
electrodes and ACHs of the reference units were also compiled 
simultaneously with CCHs. 

CCH FEATURES. The presence of significant features in the corre- 
logram was initially judged by visual inspection. The statistical 
significance of correlogram features was determined by comparing 
the counts in the feature (usually a peak) with the counts in the 
baseline. To characterize both single and multiple correlogram 
peaks by a common method, we used Gabor functions for all 
CCHs. From the best fit Gabor function for each correlogram, we 
estimated four parameters: I) location of the peak with respect to 
the origin of CCH, 2) RMA, 3) area under the peak divided by 
the area of baseline under the peak, expressed as mean percent 
increase (MPI) (Cope et al. 1987)) and 4) frequency of oscillations 
when there were multiple peaks. As a control, we sometimes com- 
piled a modified version of the standard shift predictor (Perkel et 
al. 1967). The target spike train was shifted by an arbitrary time 
period (usually 1 s) greater than the average duration of oscillatory 
episodes and a CCH was compiled between the shifted spikes and 
the unshifted reference spikes. None of the shifted correlations 
exhibited significant features. 
FIRING FREQUENCIES DURING AND OUTSIDE OSCILLATIONS. On- 
sets and offsets of oscillations (as defined above) were used to 
calculate the average frequency of each unit during individual os- 
cillatory episodes. First the average of interspike intervals fully 
contained within the episode, and of the interpolated 50-ms inter- 
vals when they straddled the onset and offset of oscillatory epi- 
sodes, was calculated. Then the average interspike intervals were 
converted to frequencies. The average frequency in a standard 
period of 100 or 200 ms before the defined onset of each oscillatory 

episode was calculated in a similar manner, as was the average 
frequency following the oscillatory episode. 

RESULTS 

We recorded 134 pairs of units unilaterally (84, 4 1, and 
9 pairs from monkeys I-3, respectively) and 42 pairs bilater- 
ally (all from monkey 1). The large sample from monkey I, 
which exhibited particularly robust oscillations, also allowed 
us to compare synchronization between different cortical 
areas of the same monkey. The recorded pairs were often 
selected on the basis of their modulation in CTHs calculated 
on-line. CTHs, ACHs, and CCHs were then compiled off- 
line for the recorded pairs. 

ACHs 

In sensorimotor cortex, ACHs of spike activity compiled 
for recording periods of 2-30 min rarely revealed clear peri- 
odicity, even if robust oscillations occurred in the LFPs re- 
corded simultaneously and when CTAs showed modulated 
unit activity (Fig. 2A). There are two possible explanations. 
First, cycle frequency of the oscillations could vary substan- 
tially over the recording period, which would smooth out 
the secondary ACH peaks. Second, in the awake, behaving 
monkey, oscillatory periods comprised only a small fraction 
of the total recording period (usually < 10%) (Murthy and 
Fetz 1996) and long periods of nonoscillatory activity tended 
to dilute any periodicity in the ACH. However, gated ACHs 
compiled specifically for spikes that occurred during LFP 
oscillations did exhibit periodicity (Fig. 2B). In contrast, 
ACHs of unit spikes outside LFP oscillations showed no 
periodicity (Fig. 2C). STAs of LFPs indicated that the spikes 
tended to occur during the negativity of LFPs (Fig. 2E). 
Calculating STAs for long recording periods that included 
both oscillatory and nonoscillatory activity also diluted oscil- 
latory features. Because we were interested primarily in the 
relation between units and LFPs specifically during oscilla- 
tory episodes, we used CTHs extensively to quantify associ- 
ated modulations in unit activity. 

CTHs 

A typical CTH of two units recorded simultaneously at 
sites in the hand and arm area of the motor cortex is shown 
in Fig. 3. Such histograms exhibited periodic peaks near the 
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Gamma (30-100Hz)…sensory modality specific, attention Wittington et al.,2012

Delta (1-3Hz)…entrainment to a rhythmic external event Klimesch,2012

Theta (4-7Hz)…organization of working-memory contents Roux,Uhlhaas,2014

Alpha (7-13Hz)…inhibition of  irrelevant factors Roux,Uhlhaas,2014

Beta (13-30Hz)…sensorimotor transmission Kilavik et al.,2013
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